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When a basin containing a 
the dimensionless number 

, shallow liquid is rotating with angular velocity 52 and 

8 = 4Q2L2/gM 

is small (L  and M are typical horizontal and vertical dimensions), then, to a first 
approximation, the second-class motions behave as if the free surface of the 
liquid were fixed in its equilibrium position. The lower second-class modes of 
such a liquid, contained in a paraboloid, are relatively easy to describe on the 
basis of this approximation. When the liquid is rotating within an elliptical 
paraboloid and the sense of rotation is opposite to that of the container itself, the 
motion is unstable for a range of small angular velocities. Such unstable motions 
always exert a couple tending to oppose the rotation of the container. 

1. Introduction 
Shallow-water motions in a non-rotating system can conveniently be divided 

into two classes. In  simple circumstances these classes are quite distinct; the 
first consists of long gravity waves, or oscillations, with typical frequencies of 

(1.1) 
order Y, where 

v2 = Mg/L2, 

N and L being characteristic vertical and horizontal scales respectively; the 
second consists of steady rotational motions (on a linear theory). The first-class 
motions involve a significant disturbance of the free surface, the essence of the 
motion being the alternation between kinetic and potential energies. The 
second-class motions do not significantly disturb the free surface and the energy 
is almost entirely kinetic; the motion is essentially rotational. 

When the whole system rotates with angular velocity 52, the second-class 
motions may become oscillatory with frequency of order Q (see Lamb 1932, 
$5 206,212 and 223). If we let the relative vorticity be { (i.e. the vorticity relative 
to axes rotating with the system) then the absolute vorticity is [+ 252 and the 
potential vorticity is given by ( 5  + 252)/h where h is the depth of the liquid. This 
quantity is important in shallow-water theory because i t  is conserved, that is it  
satisfies 

If in the static undisturbed state the potential vorticity is constant then the 
linear approximation to second-class motions will be steady though the flow 

t Now at the Department of Applied Mathematics and Theoretical Physice, Cambridge. 

D[( [+  2R)/h]/Dt = 0. (1.2) 
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will be in ‘geostrophic ’ equilibrium and the free surface will no longer be undis- 
turbed. However, when there is a gradient of potential vorticity in the 
undisturbed state the second-class motions will generally be oscillatory, though 
there may be particular modes that are steady. In  the present investigation the 
gradient of potential vorticity is provided by the variation of the equilibrium 
depth, though in the well-known simple example of oscillatory second-class 
motions, Rossby waves (Rossby 1939), the gradient of potential vorticity is 
provided by the variation in s1 consequent on the sphericity of the earth. 

Although the existence of second-class motions has been known for some time, 
it is only in recent years that they have received much attention. This recent 
work has been largely stimulated by problems associated with numerical weather 
forecasting by dynamical processes, by the increasing number of observations of 
oceanic motions and by the realization that the important large-scale motions 
of the atmosphere and the current systems of the oceans are essentially of the 
second class. There are still very few studies of simple systems by which one can 
hope to gain insight into the behaviour of second-class motions and these studies 
have been concerned with the effect of the sphericity of the earth on the motion 
of a liquid of constant depth (see Goldsbrough 1933; Arons & Stommel 1956; 
Longuet-Higgins 1964, 1965). 

It is the purpose of this paper to examine the behaviour of some simple 
examples of second-class motions, both stable and unstable, of a slowly rotating 
system, the gradient of potential vorticity being provided by variation in 
equilibrium depth. It is first shown that the upper surface of the liquid may be 
regarded aa fixed,t provided the dimensionless number E is small where 

This is equivalent to the parameter employed by Longuet-Higgins (1965), where 
L is the radius of the earth and M the liquid depth. (e also becomes the reciprocal 
of the ‘Burger number’ of stratified flow if g is replaced by gAp/p, see Burger 1958 
and Phillips 1963.) With this simplification it is relatively easy to examine the 
behaviour of the lower second-class modes in an elliptic paraboloid and to show 
that simple ‘elliptic’ rotation in such a container is unstable for certain angular 
velocities. 

E: = 4Q2L2/gM. (1.3) 

2. Formulation 
Let the shape of a basin containing a shallow liquid be described by the 

equation 

Capital letters are used here for the various variables; small letters are used for 
the corresponding dimensionless variables defined in the following section. If 
the basin is rotating with constant angular velocity 8, the motion of the liquid 
is governed by the three equations 

2 = Z ( X ,  Y ) .  (2.1) 

D U / D T + g a ( H + Z - 8 ~ 2 R 2 / g ) / a X  = 2QV, (2.2) 

DV/D!P + 9 a(H +Z - &YR2/g)/aY = - 2QU, (2.3) 

(2.4) aH/aT + a(HU)/aX + a(HV)/aY = 0, 

t A similar result has recently been obtained by Phillips (1965). 
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where H is the depth of the liquid and R2 = X2.t Y2 .  There are two types of 
boundary conditions that usually occur. If the basin has a vertical periphery, 
then the boundary of the liquid is fixed and the component of the velocity normal 
to the boundary must vanish at the boundary. If the basin is sloping at the edge 
of the liquid (like a beach) then the liquid boundary is free and we have H = 0, 
implying that DHIDT = 0, akin to the condition of constant pressure at a free 
surface. We will show later that these two types of boundary condition become 
identical for second-class motions of a slowly rotating system. 

Before discussing equations (2.2)-(2.4) in more general terms, we notice that 
when the equations are linearized in the usual way for small motion and when 
the boundaries are free, there is always a steady solution of the form 

H = P(Z*) - Z*,  

2 n u  = -gaF/aY ,  

2 8 8  = gaF/aX,  

2" = Z - $Q2R2/g, (2.8) 

and F is an arbitrary function. In  this steady motion the streamlines are parallel 
to the contours of Z*.  This solution gives only a subclass of the second-class 
motions and some special cases of it are discussed in Q 4 (see also Lamb 1932, Q 207). 

We also notice that when Z* is constant and the boundaries are fixed, there 
is a steady solution of the linearized equations of the form 

2nu = -gaH/aY,  (2.9) 

2Q V = g aH/aX, (2.10) 

where H is constant on the boundary but otherwise arbitrary. This solution gives 
all possible second-class motions of this particular system, the liquid being in 
'geostrophic ' equilibrium and the velocity field being non-divergent. 

When the basin is fixed to the rotating earth and the vertical co-ordinate is 
taken perpendicular to the geopotential surfaces, the centripetal terms, involving 
&?R2, no longer appear in equations (2.2) and (2.3) (having been absorbedin g), 
Z* becomes equal to Z and the above condition, for the degeneration of the 
second-class motions into steady motions, becomes merely Z = const. This is 
perhaps one reason why second-class motions have not received much attention, 
most theoretical work has been concerned with basins of constant depth on 
a rotating earth in which oscillatory second-class motions cannot occur unless 
the basin is large enough for the sphericity of the earth to be significant. 

3. Second-class motions of a slowly rotating system 

dimensionless quantities u, v, x, y, t ,  h, z by 
Let us now choose a horizontal scale L and a vertical scale M and define 

and 

u = 2LQu, v = 2 L n v ,  
X = L x ,  Y = G ,  
H = M h ,  Z = N Z ,  

T = t /2Q. 

(3.1) 

35-2 
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Equations (2.2)-(2.4) then become 

e(DU/Dt - v - $x) + a(h +- z ) / ~ x  = 0, 

e(Dw/Dt + u - $9) - a(h + Z)py = 0, 

ahpt + a(hu)/aX+ a(hv)/ay = 0, 

( 3 4  

(3.3) 

(3.4) 

where e is the dimensionless number defined by (1.3). We now assume, first, that 
the motion has time and space scales appropriate to the transformation (3.1), 
and secondly that the rotation is slow in the sense that e is small. We are thereby 
confining our attention to second-class motions, that is, motions which have 
a characteristic frequency of order Q. First-class motions have frequencies of 
order vl, say, where 

(~,/2!2)' = Mg/(4n2L2) = e-l, 

which is, under these assumptions, a higher-order of magnitude than the 
frequency of second-class motions. 

The condition for the validity of the shallow-water approximation is almost 
automatically satisfied by this type of motion. To see this we first notice that 
equations (3.2) and (3.3) imply that the slope of the free surface (h+z) is small, 
which indicates that the vertical accelerations will be greatest at the base of the 
liquid where it runs up or down the slope of the basin. We therefore have 

(3.5) 

w = u azpx + v azla Y = 2 ! 2 ~ ( u  azpx + Vazpy). 

The vertical velocity is of order 2QM and the vertical acceleration is of order 
4 P M .  The conditions for the validity of the shallow-water approximation, that 
the vertical acceleration should be small by comparison with g, can now be 
written 

4Q2M/g 6 1, 

or WIL)'  6 1, 

and we see that this is satisfied if E is small even when M and L are of the same 
order of magnitude. 

We now seek first approximations to the basic equations (3.2)-(3.4) for small 
values of the parameter e. We do this by expanding the dependent variables in 
a series of ascending powers of E and then obtain a series of equations by equating 
coefficients of e when these expansions are substituted into equations (3.2)-( 3.4). 
Let us put 

(3.6) 

u = u,+u,s+ ... +usen ..., 
v = v,+w,s+ ... + V U , P  ..., 
h = h,+h,s+ ...+ hns" .... 

The terms of zero order in e then give 

a(ho + Z)px = 0, 

a(h,+z)/ay = 0, 

ahopt + a(h,u,)/ax + a(ho wo)/ay = 0. 

Equations (3.7) and (3.8) show that, to a first approximation, the free surface is 
Zevzl; we also know that, if volume is to be conserved, this level must coincide 
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with that of the undisturbed free surface. If we measure z from the level of the 
undisturbed free surface then we have 

ho+z = 0,  

a(zu0)/ax + a(zv0)/ay = o. 
and equation (3.9) becomes 

(3.10) 

(3.11) 

The terms of order c in equations (3.2) and (3.3) give 

~ ~ U ~ p ~ t  - vo - 9. + ah,/ax = 0, (3.12) 

and Dovopot  + ~6 - $9 + a l l a y  = 0, (3.13) 

which together with (3.11) form a determinate set of equations in the three 
unknowns uo, vo and h,. The operator Do/Dot is defined by 

D , / D , ~  = ap t  + uo a/ax + v0 a/ay. (3.14) 

A t  a free boundary Dh/Dt is zero and, when this is expanded in powers of 6, the 

(3.15) 
terms of zero order give 

which shows that the velocity is parallel to the contour of z and therefore parallel 
to the boundary since this is itself a contour of z ( z  = 0). The boundary conditions 
at free and fixed boundaries are therefore identical (what was previously a free 
boundary has now become essentially a fixed boundary with zero depth). 

The set of equations (3.11)-(3.13) is exactly the same as the set which governs 
the motion of a shallow liquid in a basin of shape given by (2. l), but with a rigid 
upper surface, the pressure exerted by the liquid on this surface being propor- 
tional to h,. On the other hand, from the point of view of (3.6) we must regard 
hle as the small deviation of the free surface from its equilibrium position. 

Perhaps the most convenient way to express these equations in terms of a single 
dependent variable is first to eliminate h, by determining a vorticity equation 
from (2.16) and (2.17) thus 

u0 azpx + v, azpy = 0, 

D ( a ~  a y  (a, au 
(" a,) Dt ax ay ,ax ay ax ay 

+ - - - + 1  -+- = o ,  - --- (3.16) 

and then to express (3.16) in terms of a 'stream function' by putting 

ZU = - a(Z2$) /ay,  zv = a(zz$)/aX, 

SO u = - 2$ azpy - z a$/ay, v = 2$ a+x + z a$/ax, (3.17) 

and 

(3.18) 

(3.19) 

The suffix zero has now been omitted as no longer relevant. Equation (3.11) is 
now automatically satisfied and so also is the boundary condition at 'free' 
boundaries (where z = 0) provided V$ remains finite; this is not a necessary 
condition but is sufficient for present purposes. 
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4. Second-class oscillations in an elliptic paraboloid 
We now apply the preceding ideas to determine the second-class motions in an 

elliptic paraboloid, such a basin being the simplest that has both the necessary 
variation in depth and a low enough degree of symmetry to avoid degenerate 
modes. Suppose the liquid has central depth M (chosen equal to our vertical 
‘scale’) and take the origin of co-ordinates at the centre of the liquid surface, 

(4.1) 
then (2.1) becomes 

Let us take L to be a typical horizontal dimension of the liquid defined by 

L2 = 2M/(a+/?), ( 4 4  

z = ~[( l -a)x2+(1+u)y2]-1 ,  (4.3) 

where a = (B-a)/(P+a) (4.4) 

Z = &X’++PY’-M. 

then, using the dimensionless variables defined by (3.1), (4.1) reduces to 

(a  is supposed positive for definiteness, the major axis of the ‘free’ surface then 
being in the x-direction). Equations (3.17) can now be written 

and (4.5) 

We linearize the vorticity equation (3.16) in the usual way for small motion by 
neglecting the terms of the second degree in the velocity and substitute for 
u and 2) using (4.5) to obtain 

(4.6) 

We have now reduced the problem of determining the character of small 
second-class motions in a slowly rotating elliptic paraboloid, to the problem of 
finding the character of the solutions of the single equation (4.6). This equation 
has polynomial solutions and it seems likely that these solutions are the only ones 
for which $ is finite throughout the region of interest (i.e. z < 0). The simplest 

(4.7) 
non-trivial solution is Sl. = $oo (constant), 

and u = - 2( 1 + u)y$oo, v = 2( 1 -a)  x$oo. ( 4 4  

w = -2$oo. (4.9) 

This is elliptic rotation with angular velocity w where 

Each liquid column moves in an ellipse that is similar to the elliptical periphery 
of the liquid. The range of potential vorticities (dimensionless) in the undisturbed 
state is (1, co), whereas in a state. of elliptic rotation the range is [( 1 + 4+00), m], 
so that elliptic rotation can only be generated by processes that create or destroy 
potential vorticity (the same is true of the other modes discussed in this section). 
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We next consider the case where $ is a first-degree polynomial in x and y, the 

$ = $ l O " f $ " l Y .  (4.10) 

We need only consider polynomials in which the terms all have degrees of the 
same parity, because equation (4.6) only provides relationships between the 
coefficients of terms of the same parity. On substitution into equation (4.6) we 

coefficients being functions of time, thus 

find (4.11) 

((7+3a)d$oi/dt}-(l -ka)$io = 0. (4.12) 

The motion is therefore oscillatory with frequency v where 

Y2 = (1 - a"/(49 - gay. (4.13) 

The exact value of this frequency (i.e. without restriction on e) is given by Ball 
(1965, equation (9.1)) for the case of a basin rotating with the earth. The frequency 
appears as the smallest root of a fifth-degree equation, which when put in appro- 
priate dimensionless form is easily seen to reduce to the value (4.13) for small e. 
The other roots of this equation represent the frequencies of modes of the fist 
class. In the case of a circular paraboloid a = 0 and (4.13) gives v = 3, in agree- 
ment with Miles & Ball (1963), equations (3.16b), s = 1 , j  = 2. 

(a) Initial state t = 0 

(b)  1 period t = n f4v 0 
FIGURE 1. Streamlines for the 'linear mode'. 
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The solution can be written 

$ = A [x{( 1 - a)  (7 + 3a))3 cos (vt) + y{( 1 +a)  (7 - 3a))Q sin (vt)], (4.14) 

and the streamlines consist of two opposite circulation cells separated by the 
diameter $ = 0. This diameter rotates in a positive direction (i.e. in the same 
direction as the direction of rotation of the system) see figure 1. The actual 
motion of the liquid particles is quite different from that suggested by the stream- 
lines. All particles move in small ellipses of various eccentricities and orienta- 
tions. Those near the principal axes of the container move in ellipses whose 
principal axes are parallel to those of the container, whereas those near the 
boundary of the liquid execute simple harmonic oscillations parallel to the 
boundary. 

We next consider the modes for which $ is a quadratic function of x and y, 

$ = $00 + $20x2 + 2$11XY + $02Y2, (4.15) 

which, on substitution into (4.6), leads to 

(4.16) 

(4.17) 

Equation (4.17) enables $oo to be determined when equations (4.16) have been 
solved. The frequency equation for (4.16) is 

v[5v2(5 - 2a2) - (1 - a2)] = 0, (4.18) 

which shows that there is a steady mode (v = 0) and a mode with frequency 
given by 

v2 = (1 - a2)/[5(5 - 2a2)]. (4.19) 

In  the case of a circular paraboloid a = 0 and (4.19) gives v = + in agreement 
with Miles 6 Ball (1963), equation (3.16b), s = 2 , j  = 2. 

The simplest form of the steady-state solution is 

$ = A[(l-a)x2+(l+a)y2] ,  (4.20) 

corresponding to a central negatively rotating region surrounded by an annular 
positively rotating region (assuming A > 0). As in the case of elliptic rotation 
the liquid particles move in ellipses along the contours of z. Both this solution 
and elliptic rotation (4.9) are special cases of the approximate form of the steady 
solution (2.5)-(2.7). Whenever we assume that $ is a polynomial of even order, 
2n say, we must obtain a steady solution in which $ is an nth-degree polynomial 
function of z (corresponding to P, in equations (2.5)-(2.7), being an (n+ 1)th- 
degree polynomial). 

$ = A[{( 1 +a) (3 - 2a) y2 - (1 - a )  (3 -t 2a)x2 + a} sin vt + {6( 1 - a2)/5v}xy cos vt]. 
(4.21) 

When t = 0 the streamlines form four circulation cells separated by the principal 

The oscillatory solution is given by 



Second-class motions of a shallow liquid 553 

axes of the elliptical container, the sense of the circulation having the same sign 
as xy ( A  > 0) .  The two positive circulation cells merge and the pattern changes 
so that in the quarter-wave state (t = 77/2u) there are three cells, a positive one 
in the middle and a negative one a t  each end of the ellipse, the cells being sepa- 
rated by hyperbolic arcs (see figure 2). The half-wave state is similar to the 
initial state except that the circulations are of opposite sense. As in the oscil- 
latory mode considered previously, these circulation cells are only apparent, the 
liquid particles in fact move in small ellipses. 

(a) Initial state t = 0 

( b )  f period t =nl4v cggl 
(c) a period t = n/2v 

FIGURE 2. Streamlines for the ‘quadratic mode’. 

One can continue the sequence and assume that $ is a third-degree polynomial 
and so obtain a frequency equation 

u4[( 221 - 4 5 ~ 2 ) ~  - 1042a2] - 2u2( 1 - a2) (1385 - 1 5 3 ~ ~ )  f 9( 1 - u ~ ) ~  = 0. (4.22) 

for the two cubic modes. For this and higher modes the algebra is extremely 
involved. When the paraboloid is circular, a = 0 and (4.22) gives u = 2% and 
u = in agreement with Miles & Ball (1963) equation (3.16b), s = 3, j = 2 or 
s = 1 , j  = 3. 
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5. The effect of elliptic rotation on the simpler modes 
When the liquid is rotating elliptically (see equations (4.7) and (4.8)), the 

vorticity is constant and the non-linear terms in equation (3.16) vanish. 
Elliptic rotation is therefore an exact solution of the non-linear equations and we 

can consider perturbations from a state of elliptic rotation with vorticity A say 
(the exact solution for elliptic rotation when 8 is not small has been considered 
elsewhere in Ball 1965). Accordingly we put 

(5.1) 

(5.2) 

u = -  i ( 1  + U ) Y A -  2(1 +Ct)y$--a$/ay, 

v = g( i  - a ) x ~  + 2(1 - a)z$ + zaglax, and 

in equation (3.16) and assume that $, which is now the perturbation from the 
basic value $A, is small. We then obtain 

This equation, although a great deal more complicated than (4.6), still has 
polynomial solutions that 'correspond' to the polynomial solutions of (4.6). 

We first determine the effect of the elliptic rotation on the linear mode by 

(5.4) 
assuming, as before, that 

$ = $lox + $OlY. 

When we substitute this expression into equation (5.3) we obtain 

((7 - 3a)d$,,/dt} + (1 - a )  [ 1 + gA(3 + a)]$ol = 0, (5.5) 

((7+3a)d$ol/~t}-(l3-a)[1 +$A(3-a)]$,o = 0. (5.6) 

Y' = (1 -~~)[l+gR(3+~)][1+$A(3-~)]/(49-9~~). (5.7) 

We therefore have a motion with frequency Y given by 

When v2 is positive the motion is oscillatory and substantially the same as before. 
There is, however, the interesting possibility of a negative 9, implying i n s t ~ i l ~ t y  
for a certain range of negative A, namely 

- 3 / ( 3 + ~ )  > A > -Q/(3-a). (5.8) 

This type of instability does not occur when the rotation is circular (a = 0 )  but 
no matter how small the ellipticity of the rotation there are always values of A 
that  lead to instability. 

Let us consider briefly the case where A is in the middle of the range of 
instability, i.e. 

We put 7 2  = - Y - ~  so that 
A = -3. (5.9) 

7 2  = 9(49 - 9uZ)/[a2( 1 -US)]. (5.10) 
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The solution for the unstable motion (7 > 0) is given by 

II. = Aexp ( t /7)  [x((7 + 3a) (1 -a)}* + y((7 - 2a) (1 +a)}% (5.11) 

which represents an additional circulation, roughly as depicted in figure 1 (a), 
the line dividing the circulation cells being inclined a t  45’ when the ellipse is 
nearly circular and at a greater angle to the major axis otherwise. The resultant 
streamlines, when this pattern is combined with the basic elliptic rotation, 
represent a single rotation cell in which the centre of rotation no longer coincides 
with the centre of the basin. This instability therefore represents a tendency for 
the centre of the circulation to migrate from the centre of the ellipse towards 
one ‘end’ of the ellipse when the ellipticity is large and into a quadrant in which 
xy is positive if the ellipticity is small. The minimum value of 7 is about 40 so 
that this unstable motion develops very slowly. 

We determine the effect of elliptic rotation on the ‘quadratic’ modes by 

(5.12) putting 

in equation (5.3) to obtain 

* = ~oo+*zo~2+2*ll~Y+*ozY2 

((11-7a)d@20/dt}+((1-a)dlC.02/dt}+(2(1-a) (1 +6A)@11} = 0, (5.13) 

10d$ll/dt + (1 -a)  [1+ 3A(2 + a)]$o2 - (1 +a)  [1+ 3 4 2  -a)] @zo = 0, (5.14) 

((~1+7a)d@oz/dt}+{(1+a)d@zo/dt)-2(1+a)(1+6A)$ll = 0, (5.15) 

and d(2$oo - *02 - *2o)/dt = 0- (5.16) 

The frequency equation becomes 

~ ( 5 ~ 4 5  - 2a2) - (1 - a2) (1 + 6A) (1 + 6A - 2Aa2)} = 0. (5.17) 

As before we have a zero-frequency mode and an oscillatory mode which may 
become exponentially unstable if A is negative and 

-Q > A  > -1/(6-2a2). (5.18) 

The function $ gives a three-cell streamline pattern (as in $4) which when added 
to the basic flow shows that the elliptic rotation cell may tend to elongate and 
ultimately break into two cells. 

6. Necessary conditions for instability 
(a)  A crude necessary condition independent of the ellipticity 

A crude necessary (but not sufficient) condition for the instability of elliptic 
rotation can be derived by considering the total angular momentum and energy 
of the motion. The angular momentum, in dimensionless form, is 

where dS is an element of area, the range of integration covers the whole ellipse 
and, on our present approximation, we have 

h =  - z =  l- ij(l-a)z2-+(l+a)yz.  (6.2) 
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Consider the identity 

a(h%)/ax - a(h2u)/ay -t 2 h ( ~ ~  - UY)  = hz[+ 2ah(uy + V Z ) ,  (6.3) 

where [is the vorticity. By integrating (6.3) over the whole ellipse, remembering 
that h is zero on the periphery, we obtain 

J = - h2[dS + a h(uy + vx) dS. (6.4) 2 ' S  s 
The last integral can be written 

S h g ' d S  = dt 

which is zero, since the shape of the liquid is fixed, whence 

Suppose the motion has been derived from a state of elliptic rotation by a 
process that conserves potential vorticity (as would, for instance, a spontaneous 
motion). If a liquid column of depth h, area dX and vosticity c, formerly had 
depth h,, area dS, and vorticity A, then 

h dS = h, dS, 

([+ 1 )  dS = (A + 1 )  dS, 

(conservation of volume), 

(conservation of potential vorticity), and 

and from (6.6) we can express the angular momentum in the form 

J = - h2([+ 1 ) d S - -  h2dS 2 's 2 'I 
= ~ ~ ( A + l ) d S l - ~ / h z d 8 .  2 

Now the shape of the liquid is unchanged so 

Furthermore, A is constant and equation (6.9) can be written 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

and if we denote the angular momentum of elliptic rotation 
by J1 then 

J -  J1 = &A+ 1) (h2-h:)dS1, s 
S J - J1 = +(A -I- 1 )  (h  - 7EJ2d81. and using (6.10) 

with vorticity A 

(6.12) 

The integral in (6.12) is necessarily positive and this implies that any spontaneous 
breakdown of elliptic rotation will cause an increase in the total angular 
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momentum if the absolute vorticity, A +  1, is positive and a decrease otherwise. 
It is shown in the following paragraphs that the absolute vorticity must be 
positive for the elliptic rotation to be unstable and such unstable motions must 
therefore be accompanied by an increase in angular momentum. 

Let us now consider the kinetic energy of the liquid given by 

If we put 

and 

(6.13) 

(6.14) 

(ul, vl) being the velocity field of elliptic rotation, then 

K = - h [u: + vf + ut2 + vt2 + A{(zv’ - yu‘) - a(xv’ + yu’))] dS. (6.15) 2 ’s 
The first two terms in the integrand give the kinetic energy K ,  of the elliptic 
rotation and since the kinetic energy is constant we have 

K = K,. 

The next two terms give the kinetic energy of the disturbance and are necessarily 
positive, the remaining terms are 

P 

QA J h(xv‘- yu’) dS = frA(J- J1), 

and QAa h(xv’ + yu’) dS = frAa h[uy + wx - QA( 1 - a )  x2 + *A( 1 + a)  y2] dS, s s 
where J1 is the angular momentum of the elliptic rotation, The latter integral 
vanishes because of symmetry of the integrand and constancy of shape of the 
liquid (see (6.5)). Equation (6.15) now becomes 

/ h ( d 2  + d2)  dS + A(J - J,) = 0. (6.16) 

in the case of a circular basin there is no couple exerted on the liquid and 
J is constant, so we have 1 h ( d 2  + v’2) dS = 0, 

which implies that u’ = v‘ = 0 and the motion is stable. In  the case of an elliptic 
basin we substitute for J -  J1, using (6.12), to obtain 

(6.17) 

A spontaneous motion can only occur if the second term is negative, a necessary 
condition for instability is therefore 

A(A+ 1) < 0, or - 1 < A < 0. (6.18) 

The relative vorticity must be negative and the absolute vorticity positive for 
instability to occur and, as remarked previously, positive absolute vorticity 
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implies an increase in angular momentum which in turn implies that an unstable 
motion must exert a couple tending to oppose the rotation of the container. 

We can also set a limit to the rate of increase of J by the following trans- 
formations, 

1 h(u'2 + v'2) dS = h(u' + v')2 d S  - 2 hdv'  dS, s s 
and / h u ' v ' d S =  h(u+iJ(l+a)Ay)(v-&(l-a)Az)dS s 

= 1 h(uv + *A[( 1 +a) yv - (1 - a)zu] - $Az( 1 - a2)zy}dS. 

The term in A2 vanishes because of the symmetry of h and the term in A can be 
written 

&A$/ h[( 1 +a)$ - ( 1  -a)z2] dS = 0 

because the liquid has constant shape, whence 

J h(U'2 + v12) = qu' + vt)2 as - 2 huv as. (6.19) s s 
The last integral can be transformed further by putting 

J = h(w-uy)dS-a h(vz+uy)dS s s (6.20) 

(in this expression for J the second integral is identically zero, see (6.5)). Com- 
bining the two integrals we obtain 

J = h [ ( l - a ) v x - ( l + a ) u y ] d S ,  s 
and differentiation with respect to time gives 

dJ 
at 
- = - ~+?auv + z( 1 - a)  (a ap/ay + u) - y (1  +a) (a apjax - v)> 

= - 2a huv dS h[z2( 1 -a)  + y2( 1 + a)]dS s 
The last integral vanishes because h is zero on the periphery and the second 
integml vanishes because the liquid has constant shape, and so we obtain the 
following simple expression of dJ/d t  

dJldt = - 2a huv dS. (6.21) s 
F'rom (6.16), (6.19) and (6.21) we obtain 

a h(u' + w ' ) ~  dS + dJ/dt  + aA(J - J- )  = 0 

dJ/dt  c -aA(J-  J1). 
s 

or (6.22) 
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The time constant for exponentially increasing J is therefore not less than 
- (aA)-l (A is negative for instability, see (6.18)). 

( b )  Necessary conditions for an almost circular basin 
Suppose the container (not necessarily elliptical) rotates with angular velocity 
w1 and the liquid rotates with angular velocity w2 relative to the container. In  
the limiting case, where the container is circular, we have a circular rotation with 
angular velocity wo = w1+w2, a motion that we know to be stable. In  the 
exponentially unstable modes the exponent must tend to zero as the container 
is continuously deformed into a circular paraboloid and, provided the frequency 
is measured relative to axes rotating with angular velocity wl, will ultimately 
correspond to a mode of zero frequency. It is easy to determine the circum- 
stances in which the various modes have zero frequency since we know the 
complete solution in the case of the circular paraboloid (see Miles & Ball 1963). 
This analysis will then give necessary conditions for pure exponential instability 
for any small continuous distortion from the circular shape. Different considera- 
tions apply to oscillatory unstable (overstable) motions about which a little is 
said subsequently. 

The frequency of the (s,j) second-class mode for a liquid rotating with angular 
velocity wo in a circular paraboloid, when E is small, is given by 

v = skuo, (6.23) 

where (6.24) 

and the frequency is measured relative to the rotating liquid (see Miles & Ball 
1963, equations (3.16b) and (3.17)). A positive frequency here indicates a mode 
that rotates in a positive direction and s is the ‘angular wave-number’ so the 
angular velocity of the mode, relative to the liquid, is 

k = 2/[s+2(j+s)(j-  l)] (s a n d j  are integers, s P 1, j P 2), 

w8.i = v/s = kw,. (6.26) 

The ‘absolute’ angular velocity of the mode, i.e. relative to stationary 

(6.26) 
co-ordinates, is 

If we take co-ordinates rotating with angular velocity w1 where 

ws,j + wg = wo( 1 + k). 

wo = w1+ w2, (6.27) 

then, relative to these new co-ordinates, w2 is the angular velocity of the liquid 
and the angular velocity of the mode is 

w8, j + wo- w 1 =  wlk +w2( 1 + k). (6.28) 

We now choose w1 so that the angular velocity (consequently also the frequency) 

(6.29) of the mode is zero, then 

In terms of the dimensionless quantity A, used previously, and substituting for 
k from (6.24), we obtain 

A = O Z / W ~  = - 2/[2 + s + 2(j + S) cj - I)]. (6.30) 

w2/w1 = - k/( 1 + k). 
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If a circular paraboloid, rotating with angular velocity wl, i s  slightly deformed and 
the liquid i s  rotating relative to the container with angular velocity w2, then (6.30) 
gives the necessary condition for the ( 5 , j )  mode to be exponentially unstable. This 
result is in agreement with our previous calculations for elliptic deformation 
since we obtain 

A = -5 (s = 1 , j  = 2 ;  compare (5.8) when a-tO),  

and A = - - 2  ( s = 2 , j  = 2 ;  compare (5.18) when a+O). 

The two cubic modes give 

A = -& (8 = 1, j  = 3), A = --K 1 5  (8 = 3 , j  = 2). (6.31) 

Necessary conditions for the occurrence of oscillatory unstable motions are 
rather more complicated and we confine our attention to a slight elliptic deforma- 
tion of the paraboloid. The nth-degree modes in an elliptic paraboloid satisfy an 
(n + 1)th-degree frequency equation derived from the n + 1 differential equations 
for the n+ 1 coefficients of the nth-degree terms in the polynomial for +. If 
n is odd this equation is in v2, if n is even there is always one zero root, corre- 
sponding to motion along the contours, and the remaining part of the equation 
is in v2. When the ellipse is deformed into a circle, the roots of this equation give 
modes that correspond to those for which 

s+2 j -4  = n, 

and all of these modes are stable. If we suppose that the container is rotating 
at an angular velocity whose value is so selected that two of these roots are equal, 
then slight deformation may lead to complex roots some of which would corre- 
spond to oscillatory unstable modes. 

It is immediately apparent that neither the linear nor the quadratic modes 
can be unstable in this way since there is only the one oscillatory mode in each 
of these groups. There are, however, two oscillatory cubic modes corresponding to 

n = 3, s = 1, j  = 3, k = &; n = 3, s = 3,j = 2, k = -& 13’ 

For instability w1 and w2 must be selected so that the frequencies, given by 

v = s ( ~ ~ , ~ + w , , - w ~ )  =. s[w1k+w2(l +k)], (see (6.25) and (6.28)) 

have the same magnitude. This leads to 

A = w21wl = -3.2- or - 3 !  263 2 6 9 9  

which together with (6.31) give four possible values of A for instability. 
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